
CENG3430 Rapid Prototyping of Digital Systems

Lecture 05:

Finite State Machine

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Recall: Combinational vs. Sequential

• Combinational Circuit: no memory

 Outputs are a function of the present inputs only.

 Rule: Use either concurrent or sequential statements.

• Sequential Circuit: has memory

 Outputs are a function of the present inputs and the

previous outputs (i.e., the internal state).

 Rule: Must use sequential (i.e., process) statements.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 2

Sequential Circuit

Combinational

Circuit

Memory

External

Inputs

External

Outputs

Internal Inputs

(Present State)

Internal Outputs

(Next State)

Processor

Address Bus
(Latches)

Recall: Typical Processor Organization

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 3

ALU
(Multiplexer,

State Machine)

Control Unit
(Decoder,

State Machine)

Registers
(Flip-flops)

Data Bus
(Bi-directional Bus)

Memory

How to maintain the internal state explicitly?

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

• “if” statement vs. “wait until” statement

• rising_edge(CLK) vs. CLK'event

– Direct Feedback Path

• Types of FSM

– Moore vs. Mealy

• Examples of FSM

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 4

• Finite State Machine (FSM): A system jumps from

one state to another:

– Within a pool of finite states, and

– Upon clock edges and/or input transitions.

• Example of FSM: traffic light, digital watch, CPU, etc.

• Two crucial factors: time (clock edge) and state (feedback)

Finite State Machine (FSM)

CENG3430 Lec05: Finite State Machines 5

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

• “if” statement vs. “wait until” statement

• rising_edge(CLK) vs. CLK'event

– Direct Feedback Path

• Types of FSM

– Moore vs. Mealy

• Examples of FSM

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 6

Clock Edge Detection

• Both “wait until” and “if” statements can be

used to detect the clock edge (e.g., CLK):

• “wait until” statement:

– wait until CLK = '1'; -- rising edge

– wait until CLK = '0'; -- falling edge

• “if” statement:

– if CLK'event and CLK = '1' -- rising edge

– if CLK'event and CLK = '0' -- falling edge

OR

– if(rising_edge(CLK)) -- rising edge

– if(falling_edge(CLK)) -- falling edge

CENG3430 Lec05: Finite State Machines 7

• rising_edge() function in std_logic_1164 library

– It results TRUE when there is an edge transition in the signal

s, the present value is '1' and the last value is '0'.

– If the last value is something like 'Z' or 'U', it returns a FALSE.

• The statement (clk'event and clk='1')

– It results TRUE when the there is an edge transition in the

clk and the present value is '1'.

– It does not see whether the last value is '0' or not.

CENG3430 Lec05: Finite State Machines 8

rising_edge(CLK) vs. CLK'event

http://vhdlguru.blogspot.hk/2010/04/difference-between-risingedgeclk-and.html

Use rising_edge() / falling_edge() with “if” statements!

CENG3430 Lec05: Finite State Machines

When to use “wait until” or “if”? (1/2)

• Synchronous Process: Computes values only on

clock edges (i.e., only sensitive/sync. to clock signal).

– Rule: Use “wait-until” or “if” for synchronous process:

process

begin

wait until clk='1';

…

end process

Note: IEEE VHDL requires that a process with a wait statement must not
have a sensitivity list, and the first statement must be wait until.

process (clk)

begin

…

if(rising_edge(clk))

…

end process 9

Usage

of
“wait

until”

Usage

of
“if”

 The first statement must be wait until.

 NO sensitivity list implies that there is one clock signal.

 The clock signal must be in the sensitivity list.

 NOT necessary to be the first line.

When to use “wait until” or “if”? (2/2)

• Asynchronous Process: Computes values on clock

edges or when asynchronous conditions are TRUE.

– That is, it must be sensitive to the clock signal (if any), and

to all inputs that may affect the asynchronous behavior.

– Rule: Only use “if” for asynchronous process:

process (clk, input_a, input_b, …)

begin

…

if(rising_edge(clk))

…

end process

CENG3430 Lec05: Finite State Machines 10

Usage

of
“if”

 The sensitivity list

should include the

clock signal, and all

inputs that may affect

asynchronous behavior.

Simply use “if” statements for both sync. and async. processes!

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

• “if” statement vs. “wait until” statement

• rising_edge(CLK) vs. CLK'event

– Direct Feedback Path

• Types of FSM

– Moore vs. Mealy

• Examples of FSM

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 11

Feed-forward and Feedback Paths

• So far, we mostly focus on logic with feed-forward (or

open-loop) paths.

• Now, we are going to learn feedback (or closed-loop)
paths─the key step of making a finite state machine.

CENG3430 Lec05: Finite State Machines 12

Controller Plant

Sensor

Direct Feedback Path

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity feedback_1 is

port(a,clk,reset: in std_logic;

c: buffer std_logic);

end feedback_1;

architecture feedback_1_arch of feedback_1 is

begin

process(clk, reset) -- async.

begin

if reset = '1' then c <= '0';

elsif rising_edge(clk) then

c <= not(a and c);

end if;

end process;

end feedback_1_arch ;

CENG3430 Lec05: Finite State Machines 13

 Signal c forms a closed loop.
• not(a and c) takes effect at

the next rising clock edge.
• The current c holds for one cycle.

 “<=” is like a flip-flop.

a c

clk

D Q

reset

Internal Feedback: inout or buffer

• Recall (Lec01): There are 4 modes of I/O pins:

1) in: Data flows in only

2) out: Data flows out only (cannot be read back by the entity)

3) inout: Data flows bi-directionally (i.e., in or out)

4) buffer: Similar to out but it can be read back by the entity

• Both buffer and inout can be read back internally.

– inout can also read external input signals.
CENG3430 Lec05: Finite State Machines 14

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

• “if” statement vs. “wait until” statement

• rising_edge(CLK) vs. CLK'event

– Direct Feedback Path

• Types of FSM

– Moore vs. Mealy

• Examples of FSM

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 15

Types of Finite State Machines

• Moore Machine:

– Outputs are a function of

the present state only.

• Mealy Machine:

– Outputs are a function of

the present state and

the present inputs.

CENG3430 Lec05: Finite State Machines 16

Even

Odd

Reset

0/0 1/1

1/1

0/0

State

/

input

/

output

Even

0

Odd

1

Reset

0 1

1

0

https://www.slideshare.net/mirfanjum1/moore-and-mealy-machines-29553482

Suggestion: Maintain the internal state explicitly!

Combinational Logic

Sequential Logic

architecture moore_arch of fsm is

signal s: bit; -- internal state
begin
process (s)
begin
OUTX <= not s; -- output

end process;
process (CLOCK, RESET)
begin
if RESET = '1' then s <= '0';
elsif rising_edge(CLOCK) then
s <= not (INX and s); -- feedback

end if;
end process;

end moore_arch;

Moore Machine

• Moore Machine: outputs rely on present state only.

CENG3430 Lec05: Finite State Machines 17

Combinational Logic

Sequential Logic

architecture mealy_arch of fsm is
signal s: bit; -- internal state
begin
process (INX, s)
begin
OUTX <= (INX or s); -- output

end process;
process (CLOCK, RESET)
begin
if RESET = '1' then s <= '0';
elsif rising_edge(CLOCK) then

s <= not (INX and s); -- feedback
end if;

end process;
end mealy_arch;

Mealy Machine

• Mealy Machine: outputs depend on state and inputs.

CENG3430 Lec05: Finite State Machines 18

Rule of Thumb: VHDL Coding Tips

 Maintain the internal state(s) explicitly

 Separate combinational and sequential logics

– Write at least two processes: one for combinational logic,

and the other for sequential logic

• Maintain the internal state(s) using a sequential process

• Drive the output(s) using a combination process

 Keep every process as simple as possible

– Partition a large process into multiple small ones

 Put every signal (that your process must be

sensitive to its changes) in the sensitivity list.

 Avoid assigning a signal from multi-processes

– It may cause the “multi-driven” issue.

CENG3430 Lec05: Finite State Machines 19

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

• “if” statement vs. “wait until” statement

• rising_edge(CLK) vs. CLK'event

– Direct Feedback Path

• Types of FSM

– Moore vs. Mealy

• Examples of FSM

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 20

Combinational Logic

Sequential Logic

Example 1) Up/Down Counter

CENG3430 Lec05: Finite State Machines 21

• Up/Down Counters: Generate a sequence of

counting patterns according to the clock and inputs.
entity counter is
port(CLK: in std_logic;

RESET: in std_logic;
COUNT: out std_logic_vector(3 downto 0));

end counter;

architecture counter_arch of counter is
signal s: std_logic_vector(3 downto 0); -- internal state
begin

COUNT <= s; -- output
process(CLK, RESET)
begin

if(RESET = '1') then s <= "0000";
else
if(rising_edge(CLK)) then

s <= s + 1; -- feedback
end if;

end if;

end process;
end counter_arch;

Example 2) Pattern Generator (1/3)

• Pattern Generator: Generates any pattern we want.

– Example: the control unit of a CPU, traffic light, etc.

• Given the following machine of 4 states: A, B, C and D.

– The machine has an asynchronous RESET, a clock signal

CLK and a 1-bit synchronous input signal INX.

– The machine also has a 2-bit output signal OUTX.
CENG3430 Lec05: Finite State Machines 22

A
OUTX=“01”

B
OUTX=“11”

C
OUTX=“10”

D
OUTX=“00”

INX=‘0’

INX=‘0’

INX=‘1’

INX=‘1’INX=‘0’

INX=‘1’

INX=‘1’

RESET
RESET=‘1’ INX=‘0’

Sequential

Logic
Combinational

Logic

Example 2) Pattern Generator (2/3)

CENG3430 Lec05: Finite State Machines 23

library IEEE;

use IEEE.std_logic_1164.all;

entity pat_gen is port(

RESET,CLOCK,INX: in STD_LOGIC;
OUTX: out STD_LOGIC_VECTOR(1 downto 0));

end pat_gen;

architecture arch of pat_gen is

type state_type is (A,B,C,D);
signal s: state_type; -- state
begin

process(CLOCK, RESET)

begin

if RESET = '1' then

s <= A;
elsif rising_edge(CLOCK) then

-- feedback
case s is
when A =>
if INX = '1' then s <= A;
else s <= B; end if;

when B =>
if INX = '1' then s <= D;
else s <= C; end if;

when C =>
if INX = '1' then s <= C;
else s <= A; end if;

when D =>
if INX = '1' then s <= C;
else s <= A; end if;

end case;
end if;

end process;

process(s)
begin

case s is
when A => OUTX <= "01";
when B => OUTX <= "11";
when C => OUTX <= "10";
when D => OUTX <= "00";

end case;
end process;

end arch;

Example 2) Pattern Generator (3/3)

• Encoding methods for representing patterns/states:
– Binary Encoding: Using N flip-flops to represent 2N states.

• Less flip-flops but more combinational logics

– One-hot Encoding: Using N flip-flops for N states.

• More flip-flops but less combination logic

– Xilinx default seeting is one-hot encoding.

• Change at synthesis options

• http://www.xilinx.com/itp/xilinx4/data/docs/sim/vtex9.html

CENG3430 Lec05: Finite State Machines 24

Rule of Thumb: VHDL Coding Tips

 Maintain the internal state(s) explicitly

 Separate combinational and sequential logics

– Write at least two processes: one for combinational logic,

and the other for sequential logic

• Maintain the internal state(s) using a sequential process

• Drive the output(s) using a combination process

 Keep every process as simple as possible

– Partition a large process into multiple small ones

 Put every signal (that your process must be

sensitive to its changes) in the sensitivity list.

 Avoid assigning a signal from multi-processes

– It may cause the “multi-driven” issue.

CENG3430 Lec05: Finite State Machines 25

Summary

• Finite State Machine (FSM)

– Clock Edge Detection

• “if” statement vs. “wait until” statement

• rising_edge(CLK) vs. CLK'event

– Direct Feedback Path

• Types of FSM

– Moore vs. Mealy

• Examples of FSM

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 26

